Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 451
Filter
1.
Proceedings of SPIE - The International Society for Optical Engineering ; 12602, 2023.
Article in English | Scopus | ID: covidwho-20245409

ABSTRACT

Nowadays, with the outbreak of COVID-19, the prevention and treatment of COVID-19 has gradually become the focus of social disease prevention, and most patients are also more concerned about the symptoms. COVID-19 has symptoms similar to the common cold, and it cannot be diagnosed based on the symptoms shown by the patient, so it is necessary to observe medical images of the lungs to finally determine whether they are COVID-19 positive. As the number of patients with symptoms similar to pneumonia increases, more and more medical images of the lungs need to be generated. At the same time, the number of physicians at this stage is far from meeting the needs of patients, resulting in patients unable to detect and understand their own conditions in time. In this regard, we have performed image augmentation, data cleaning, and designed a deep learning classification network based on the data set of COVID-19 lung medical images. accurate classification judgment. The network can achieve 95.76% classification accuracy for this task through a new fine-tuning method and hyperparameter tuning we designed, which has higher accuracy and less training time than the classic convolutional neural network model. © 2023 SPIE.

2.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12469, 2023.
Article in English | Scopus | ID: covidwho-20242921

ABSTRACT

Medical Imaging and Data Resource Center (MIDRC) has been built to support AI-based research in response to the COVID-19 pandemic. One of the main goals of MIDRC is to make data collected in the repository ready for AI analysis. Due to data heterogeneity, there is a need to standardize data and make data-mining easier. Our study aims to stratify imaging data according to underlying anatomy using open-source image processing tools. The experiments were performed using Google Colaboratory on computed tomography (CT) imaging data available from the MIDRC. We adopted the existing open-source tools to process CT series (N=389) to define the image sub-volumes according to body part classification, and additionally identified series slices containing specific anatomic landmarks. Cases with automatically identified chest regions (N=369) were then processed to automatically segment the lungs. In order to assess the accuracy of segmentation, we performed outlier analysis using 3D shape radiomics features extracted from the left and right lungs. Standardized DICOM objects were created to store the resulting segmentations, regions, landmarks and radiomics features. We demonstrated that the MIDRC chest CT collections can be enriched using open-source analysis tools and that data available in MIDRC can be further used to evaluate the robustness of publicly available tools. © 2023 SPIE.

3.
2023 6th International Conference on Information Systems and Computer Networks, ISCON 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20242881

ABSTRACT

Coronavirus illness, which was initially diagnosed in 2019 but has propagated rapidly across the globe, has led to increased fatalities. According to professional physicians who examined chest CT scans, COVID-19 behaves differently than various viral cases of pneumonia. Even though the illness only recently emerged, a number of research investigations have been performed wherein the progression of the disease impacts mostly on the lungs are identified using thoracic CT scans. In this work, automated identification of COVID-19 is used by using machine learning classifier trained on more than 1000+ lung CT Scan images. As a result, immediate diagnosis of COVID-19, which is very much necessary in the opinion of healthcare specialists, is feasible. To improve detection accuracy, the feature extraction method are applied on regions of interests. Feature extraction approaches, including Discrete Wavelet Transform (DWT), Grey Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), and Grey-Level Size Zone Matrix (GLSZM) algorithms are used. Then the classification by using Support Vector Machines (SVM) is used. The classification accuracy is assessed by using precision, specificity, accuracy, sensitivity and F-score measures. Among all feature extraction methods, the GLCM approach has given the optimum classification accuracy of 95.6%. . © 2023 IEEE.

4.
ACM International Conference Proceeding Series ; : 12-21, 2022.
Article in English | Scopus | ID: covidwho-20242817

ABSTRACT

The global COVID-19 pandemic has caused a health crisis globally. Automated diagnostic methods can control the spread of the pandemic, as well as assists physicians to tackle high workload conditions through the quick treatment of affected patients. Owing to the scarcity of medical images and from different resources, the present image heterogeneity has raised challenges for achieving effective approaches to network training and effectively learning robust features. We propose a multi-joint unit network for the diagnosis of COVID-19 using the joint unit module, which leverages the receptive fields from multiple resolutions for learning rich representations. Existing approaches usually employ a large number of layers to learn the features, which consequently requires more computational power and increases the network complexity. To compensate, our joint unit module extracts low-, same-, and high-resolution feature maps simultaneously using different phases. Later, these learned feature maps are fused and utilized for classification layers. We observed that our model helps to learn sufficient information for classification without a performance loss and with faster convergence. We used three public benchmark datasets to demonstrate the performance of our network. Our proposed network consistently outperforms existing state-of-the-art approaches by demonstrating better accuracy, sensitivity, and specificity and F1-score across all datasets. © 2022 ACM.

5.
2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20242769

ABSTRACT

Monkeypox is a skin disease that spreadsfrom animals to people and then people to people, the class of the monkeypox is zoonotic and its genus are othopoxvirus. There is no special treatment for monkeypox but the monkeypox and smallpox symptoms are almost similar, so the antiviral drug developed for prevent from smallpox virus may be used for monkeypox Infected person, the Prevention of monkeypox is just like COVID-19 proper hand wash, Smallpox vaccine, keep away from infected person, used PPE kits. In this paper Deep learning is use for detection of monkeypox with the help of CNN model, The Original Images contains a total number of 228 images, 102 belongs to the Monkeypox class and the remaining 126 represents the normal. But in deep learning greater amount of data required, data augmentation is also applied on it after this the total number of images are 3192. A variety of optimizers have been used to find out the best result in this paper, a comparison is usedbased on Loss, Accuracy, AUC, F1 score, Validation loss, Validation accuracy, validation AUC, Validation F1 score of each optimizer. after comparing alloptimizer, the Adam optimizer gives the best result its total testing accuracy is 92.21%, total number of epochs used for testing is 100. With the help of deep learning model Doctors are easily detect the monkeypox virus with the single image of infected person. © 2023 IEEE.

6.
International Journal of Computing and Digital Systems ; 13(1):1453-1464, 2022.
Article in English | Scopus | ID: covidwho-20242296

ABSTRACT

At present, the whole world is infected by COVID-19. It targets affecting the respiratory system and worsens for people with other health complications like diabetes, cardiovascular diseases, cancer, lung disorder, and so on. The availability of test kits is not adequate and symptoms of COVID-19 similar to pneumonia are deadly, which claims millions of people. The COVID-19 test kits are time-consuming and even reduce the detection rate. Therefore, in the current study, an automatic CT image classification technique for COVID-19 and Non-COVID patient identification is proposed. In this paper, a StackedAlexNet-19 convolution network for automatic classification of lung CT images is proposed. The proposed StackedAlexNet-19 model consists of different pre-trained methods like ResNet 101, Xception, NASNet, MobileNet, and InceptionV3. Based on the pre-trained model, input CT images are processed and integrated for the detection of abnormalities in COVID-19 CT images of patients. The StackAleNet-19 model is evaluated and comparatively examined with the existing techniques. The dataset for processing consists of 1359 CT images composed of COVID, non-COVID, and other infections. The validation range is set as 50 for each case with a total value of 150 and the network is trained with CT images of 1069 for classification. The analysis of results expressed that StackAlexNet-19 exhibits higher accuracy, sensitivity, and specificity value of 93.67%, 0.93, and 0.97 respectively. The proposed StackAlexNet classification technique achieves an accuracy of 93.67%. The developed model provides improved accuracy than the existing techniques. The StackAlexNet-19 facilitates the intervention of COVID-19 without any human intervention. © 2022 Bogataj, CC BY 4.0.

7.
2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20240818

ABSTRACT

This study compared five different image classification algorithms, namely VGG16, VGG19, AlexNet, DenseNet, and ConVNext, based on their ability to detect and classify COVID-19-related cases given chest X-ray images. Using performance metrics like accuracy, F1 score, precision, recall, and MCC compared these intelligent classification algorithms. Upon testing these algorithms, the accuracy for each model was quite unsatisfactory, ranging from 80.00% to 92.50%, provided it is for medical application. As such, an ensemble learning-based image classification model, made up of AlexNet and VGG19 called CovidXNet, was proposed to detect COVID-19 through chest X-ray images discriminating between health and pneumonic lung images. CovidXNet achieved an accuracy of 97.00%, which was significantly better considering past results. Further studies may be conducted to increase the accuracy, particularly for identifying and classifying chest radiographs for COVID-19-related cases, since the current model may still provide false negatives, which may be detrimental to the prevention of the spread of the virus. © 2022 IEEE.

8.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Article in English | Scopus | ID: covidwho-20240716

ABSTRACT

This paper proposes an automated classification method of COVID-19 chest CT volumes using improved 3D MLP-Mixer. Novel coronavirus disease 2019 (COVID-19) spreads over the world, causing a large number of infected patients and deaths. Sudden increase in the number of COVID-19 patients causes a manpower shortage in medical institutions. Computer-aided diagnosis (CAD) system provides quick and quantitative diagnosis results. CAD system for COVID-19 enables efficient diagnosis workflow and contributes to reduce such manpower shortage. In image-based diagnosis of viral pneumonia cases including COVID-19, both local and global image features are important because viral pneumonia cause many ground glass opacities and consolidations in large areas in the lung. This paper proposes an automated classification method of chest CT volumes for COVID-19 diagnosis assistance. MLP-Mixer is a recent method of image classification using Vision Transformer-like architecture. It performs classification using both local and global image features. To classify 3D CT volumes, we developed a hybrid classification model that consists of both a 3D convolutional neural network (CNN) and a 3D version of the MLP-Mixer. Classification accuracy of the proposed method was evaluated using a dataset that contains 1205 CT volumes and obtained 79.5% of classification accuracy. The accuracy was higher than that of conventional 3D CNN models consists of 3D CNN layers and simple MLP layers. © 2023 SPIE.

9.
2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20239799

ABSTRACT

This unprecedented time of the COVID-19 outbreak challenged the status-quo whether it is on business operation, political leadership, scientific capability, engineering implementation, data analysis, and strategic thinking, in terms of resiliency, agility, and innovativeness. Due to some identified constraints, while addressing the issue of global health, human ingenuity has proven again that in times of crisis, it is our best asset. Constraints like limited testing capacity and lack of real-time information regarding the spread of the virus, are the highest priority in the mitigation process, aside from the development of vaccines and the pushing through of vaccination programs. Using the available Chest X-Ray Images dataset and an AI-Computer Vision Technique called Convolutional Neural Network, features of the images were extracted and classified as COVID-19 positive or not. This paper proposes the usage of the 18-layer Residual Neural Network (ResNet-18) as an architecture instead of other ResNet with a higher number of layers. The researcher achieves the highest validation accuracy of 99.26%. Moving forward, using this lower number of layers in training a model classifier, resolves the issue of device constraints such as storage capacity and computing resources while still assuring highly accurate outputs. © 2022 IEEE.

10.
International Conference on Enterprise Information Systems, ICEIS - Proceedings ; 1:675-682, 2023.
Article in English | Scopus | ID: covidwho-20239737

ABSTRACT

In this proposal, a study based on deep-learned features via transfer learning was developed to obtain a set of features and techniques for pattern recognition in the context of COVID-19 images. The proposal was based on the ResNet-50, DenseNet-201 and EfficientNet-b0 deep-learning models. In this work, the chosen layer for analysis was the avg pool layer from each model, with 2048 features from the ResNet-50, 1920 features from the DenseNet0201 and 1280 obtained features from the EfficientNet-b0. The most relevant descriptors were defined for the classification process, applying the ReliefF algorithm and two classification strategies: individually applied classifiers and employed an ensemble of classifiers using the score-level fusion approach. Thus, the two best combinations were identified, both using the DenseNet-201 model with the same subset of features. The first combination was defined via the SMO classifier (accuracy of 98.38%) and the second via the ensemble strategy (accuracy of 97.89%). The feature subset was composed of only 210 descriptors, representing only 10% of the original set. The strategies and information presented here are relevant contributions for the specialists interested in the study and development of computer-aided diagnosis in COVID-19 images. Copyright © 2023 by SCITEPRESS - Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

11.
2022 IEEE Information Technologies and Smart Industrial Systems, ITSIS 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20239680

ABSTRACT

The new emerging Coronavirus disease (COVID-19) is a pandemic disease due to its enormous infectious capability. Generally affecting the lungs, COVID-19 engenders fever, dry cough, and tiredness. However, some patients may not show symptoms. An imaging test, such as a chest X-ray or a chest CT scan, is therefore requested for reliable detection of this pneumonia type. Despite the decreasing trends both in the new and death reported cases, there is an extent need for quick, accurate, and inexpensive new methods for diagnosis. In this framework, we propose two machine learning (ML) algorithms: linear regression and logistic regression for effective COVID-19 detection in the abdominal Computed Tomography (CT) dataset. The ML methods proposed in this paper, effectively classify the data into COVID-19 and normal classes without recourse to image preprocessing or analysis. The effectiveness of these algorithms was shown through the use of the performance measures: accuracy, precision, recall, and F1-score. The best classification accuracy was obtained as 96% with logistic regression using the saga solver with no added penalty against 95.3% with linear regression. As for precision, recall, and F1-score the value of 0.89 was reached by logistic regression for all these metrics, as well as the value of 0.87 by linear regression. © 2022 IEEE.

12.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12464, 2023.
Article in English | Scopus | ID: covidwho-20239014

ABSTRACT

Deep neural networks (DNNs) are vulnerable to adversarial noises. Adversarial training is a general strategy to improve DNN robustness. But training a DNN model with adversarial noises may result in a much lower accuracy on clean data, which is termed the trade-off between accuracy and adversarial robustness. Towards lifting this trade-off, we propose an adversarial training method that generates optimal adversarial training samples. We evaluate our methods on PathMNIST and COVID-19 CT image classification tasks, where the DNN model is ResNet-18, and Heart MRI and Prostate MRI image segmentation tasks, where the DNN model is nnUnet. All these four datasets are publicly available. The experiment results show that our method has the best robustness against adversarial noises and has the least accuracy degradation compared to the other defense methods. © 2023 SPIE.

13.
2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development, OTCON 2022 ; 2023.
Article in English | Scopus | ID: covidwho-20237367

ABSTRACT

COVID-19 and other diseases must be precisely and swiftly classified to minimize disease spread and avoid overburdening the healthcare system. The main purpose of this study is to develop deep-learning classifiers for normal, viral pneumonia, and COVID-19 disorders using CXR pictures. Deep learning image classification algorithms are used to recognize and categorise image data to detect the presence of illnesses. The raw image must be pre-processed since deep neural networks perform the most important aspect of medical image identification, which includes translating the raw image into an intelligible format. The dataset includes three classifications, including normal and viral pneumonia and COVID-19. To aid in quick diagnosis and the proposed models leverage the performance validation of several models, which are summarised in the form of a recall, Fl-score, precision, accuracy, and AUC, to distinguish COVID-19 from other types of pneumonia. When all the deep learning classifiers and performance parameters were analyzed, the ResNetl0lV2 achieved the highest accuracy of COVID-19 classifications is 97.S2%, ResNetl0lV2 had the greatest accuracy of the normal categorization is 92.04% and the Densenet201 had the greatest accuracy of the pneumonia classification is 99.92%. The suggested deep learning system is an excellent choice for clinical use to aid in the COVID-19, normal, and pneumonia processes for diagnosing infections using CXR scans. Furthermore, the suggested approaches provided a realistic technique to implement in real-world practice, assisting medical professionals in diagnosing illnesses from CXR images. © 2023 IEEE.

14.
2022 International Conference on Technology Innovations for Healthcare, ICTIH 2022 - Proceedings ; : 34-37, 2022.
Article in English | Scopus | ID: covidwho-20235379

ABSTRACT

Training a Convolutional Neural Network (CNN) is a difficult task, especially for deep architectures that estimate a large number of parameters. Advanced optimization algorithms should be used. Indeed, it is one of the most important steps to reduce the error between the ground truth and the model prediction. In this sense, many methods have been proposed to solve the optimization problems. In general, regularization, more specifically, non-smooth regularization, can be used in order to build sparse networks, which make the optimization task difficult. The main aim is to develop a novel optimizer based on Bayesian framework. Promising results are obtained when our optimizer is applied on classification of Covid-19 images. By using the proposed approach, an accuracy rate equal to 94% is obtained surpasses all the competing optimizers that do not exceed an accuracy rate of 86%, and 84% for standard Deep Learning optimizers. © 2022 IEEE.

15.
International Journal of Imaging Systems and Technology ; 2023.
Article in English | Web of Science | ID: covidwho-20235284

ABSTRACT

COVID-19, chronic obstructive pulmonary disease (COPD), heart failure (HF), and pneumonia can lead to acute respiratory deterioration. Prompt and accurate diagnosis is crucial for effective clinical management. Chest X-ray (CXR) and chest computed tomography (CT) are commonly used for confirming the diagnosis, but they can be time-consuming and biased. To address this, we developed a computationally efficient deep feature engineering model called Hybrid-Patch-Alex for automated COVID-19, COPD, and HF diagnosis. We utilized one CXR dataset and two CT image datasets, including a newly collected dataset with four classes: COVID-19, COPD, HF, and normal. Our model employed a hybrid patch division method, transfer learning with pre-trained AlexNet, iterative neighborhood component analysis for feature selection, and three standard classifiers (k-nearest neighbor, support vector machine, and artificial neural network) for automated classification. The model achieved high accuracy rates of 99.82%, 92.90%, and 97.02% on the respective datasets, using kNN and SVM classifiers.

16.
4th International Conference on Electrical, Computer and Telecommunication Engineering, ICECTE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20232940

ABSTRACT

To minimize the rate of death from COVID-19 and stop the disease from spreading early detection is vital. The normal RT-PCR tests for COVID-19 detection take a long time to complete. In contrast to this test, Covid-19 can be quickly detected using various machine-learning technologies. Previous studies only had access to smaller datasets, as COVID-19 data was not readily available back then. Since COVID-19 is a dangerous virus, the model needs to be robust and trustworthy, and the model must be trained on a large and diverse dataset. To overcome that problem, this study combines six publicly available Chest X-ray datasets to produce a larger and more diverse balanced dataset with a total of 68,424 images. In this study, we develop a CNN model that primarily entails two steps: (a) feature extraction and (b) classification, which are used to identify COVID-19 positive cases from X-ray images. The accuracy of this proposed model is 97.58%, which is higher than most state-of-the-art models. © 2022 IEEE.

17.
Diagnostics (Basel) ; 13(10)2023 May 19.
Article in English | MEDLINE | ID: covidwho-20233941

ABSTRACT

COVID-19 is an infectious disease caused by the deadly virus SARS-CoV-2 that affects the lung of the patient. Different symptoms, including fever, muscle pain and respiratory syndrome, can be identified in COVID-19-affected patients. The disease needs to be diagnosed in a timely manner, otherwise the lung infection can turn into a severe form and the patient's life may be in danger. In this work, an ensemble deep learning-based technique is proposed for COVID-19 detection that can classify the disease with high accuracy, efficiency, and reliability. A weighted average ensemble (WAE) prediction was performed by combining three CNN models, namely Xception, VGG19 and ResNet50V2, where 97.25% and 94.10% accuracy was achieved for binary and multiclass classification, respectively. To accurately detect the disease, different test methods have been proposed and developed, some of which are even being used in real-time situations. RT-PCR is one of the most successful COVID-19 detection methods, and is being used worldwide with high accuracy and sensitivity. However, complexity and time-consuming manual processes are limitations of this method. To make the detection process automated, researchers across the world have started to use deep learning to detect COVID-19 applied on medical imaging. Although most of the existing systems offer high accuracy, different limitations, including high variance, overfitting and generalization errors, can be found that can degrade the system performance. Some of the reasons behind those limitations are a lack of reliable data resources, missing preprocessing techniques, a lack of proper model selection, etc., which eventually create reliability issues. Reliability is an important factor for any healthcare system. Here, transfer learning with better preprocessing techniques applied on two benchmark datasets makes the work more reliable. The weighted average ensemble technique with hyperparameter tuning ensures better accuracy than using a randomly selected single CNN model.

18.
2023 International Conference on Advances in Electronics, Control and Communication Systems, ICAECCS 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2324821

ABSTRACT

Image classification and segmentation techniques are still very popular in the medical field (for healthcare), in which the medical image plays an important role in the detection and screening of diseases. Recently, the spread of new viral diseases, namely Covid-19, requires powerful computer models and rich resources (datasets) to fight this phenomenon. In this study, we propose to examine the CNN Deep Learning algorithm and two Transfer Learning models, namely RestNet50 and MobileNetV2 using the pretrained model of the ImageNet database, experimented on the new dataset (COVID-QU-Ex Dataset 2022) offered by the University of Qatar. These models are tested to classify radiography images into two classes (Covid19 and Normal). The results achieved by CNN (Acc =95.97%), ResNet50 (Acc =95.53%) and MobileNetV2 (Acc =97.32%) show that these algorithms are promising in order to combat this Covid-19 disease by detecting it through thoracic images (Chest X-ray type). © 2023 IEEE.

19.
4th International Conference on Robotics, Intelligent Control and Artificial Intelligence, RICAI 2022 ; : 1185-1190, 2022.
Article in English | Scopus | ID: covidwho-2324495

ABSTRACT

Face mask image recognition can detect and monitor whether people wear the mask. Currently, the mask recognition model research mainly focuses on different mask detection systems. However, these methods have limited working datasets, do not give safety alerts, and do not work appropriately on masks. This paper aims to use the face mask recognition detection model in public places to monitor the people who do not wear the mask or the wrong mask to reduce the spread of Covid-19. The mask detection model supports transfer learning and image classification. Specifically, the collected data are first collected and then divided into two parts: with_mask and without_mask. Then authors build, implement the model, and obtain accurate mask recognition models. This paper uses and size of images datasets tested respectively. The experimental results show that the effect of the image size of was relatively better, and the training accuracy of different MobileNetV2 models is about 95%. Our analysis demonstrates that MobileNetV2 can correctly classify Covid-19. © 2022 ACM.

20.
NeuroQuantology ; 20(22):2590-2602, 2022.
Article in English | EMBASE | ID: covidwho-2323909

ABSTRACT

A current COVID-19 detection tool is CXR imaging, which has been developing since 2019 to provide early diagnosis;it can be performed in any health unit and is more affordable than Real Time Polymerase Chain Reaction (RT-PCR) tests. However, diagnosis with Chest X Ray (CXR) images had not achieved the predictive capacity required to replace the RT-PCR test;previous studies with a limited number of images have evaluated their models. This research seeks to contribute to the detection of COVID-19 from CXR images, with the evaluation of a convolutional neural network model from CXR images, through the use of open source code on a free dataset of approximately 30 thousand images. The algorithm and mathematical model used was DenseNet-201. The results of the experiment show a precision and accuracy of more than 95% and specificity, sensitivity, predictive ability and F1 measurement of more than 90%.Copyright © 2022, Anka Publishers. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL